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A theory of functions, defined by canonical equations of two-dimensional processes in inhomogeneous layers with a power law 
of their conductivity variation, is developed, and fundamental solutions and systems of functions based on them are obtained. 
The class of functions introduced and investigated possesses, in addition to general properties [l-3], properties which are 
characteristic solely for this class, and these are investigated. The theory developed enables boundary-value problems to be solved 
in closed form, which is realized in the conjunction problems considered for two-dimensional processes of different physical kinds 
occurring in inhomogeneous layers. Ca 1997 Elsevier Science Ltd. All rights reserved. 

1. Consider two-dimensional steady processes in an inhomogeneous medium of thickness h, situated 
in a plane, where the Cartesian coordinate axes are chosen. These processes describe the quasi-potential 
of the velocity cp and stream function w, which satisfy the following system of equations, represented 
in dimensionless form [4] 

a(p -V acp -=--, -=--- l a\y 9 P= P(5,q) > 0 
36 p* all Pag 

where P = kh is the conductivity of the layer and k is its permeability. 
Introducing the complex potential 

W = cp + ivfP 

Eqs (1.1) can be written in the following form [5] in the 6 = 5 = iq plane 

%+A(& E,(W-iv,=0 

(1.2) 

(1.3) 

Equation (1.3) is covariant under certain transformations of the complex potential W. We have the 
following transformation 

Y =-iPW (ql =y, \vl =-cp) (l-4) 

which relates the complex potentials (1.2) and WI = cpl + ivl/P of one and the same process in conjugate 
[6] layers of conductivities P and PI = l/P. Equation (1.4) enables us, on the basis of processes investi- 
gated in a certain layer, to investigate the same processes in a layer conjugate to it. 

We will consider a layer with a power law of conductivity variation 

P=.P(& 11). s>o (1.5) 

(#,, q) is an harmonic function of the coordinates), for which Eq. (1.3) is reduced to canonical form. 
We will use the conformal covariance of Eq. (1.3) and choose the conformal transformation z = F(c) 
0 = Im J%) = f(C, q)) connecting the planes z = x + iy and 6. With this transformation, the boundary 
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fis, IQ = 0 of the region of the process in the 6 plane is transformed into the straight line y = 0. The 
process wiIl occur in the half-plane z(Im z > 0) and is described in it by the canonical equation which 
follows from (1.3) 

aw S(~-w) a a a -- 
az 2(2 - Z) 

=O 2z=s+iy 
( 1 

(1.6) 

Hence, a study of the processes in conductivity layer (1.5) and also in accordance with (1.4) in the layer 
conjugate to it (S < 0) reduces to finding solutions of Eq. (1.6). 

Equation (1.6) is a complex representation of the canonical system of equations which follows from 
(1.1) when 5 =x, n = y and P = f. It describes two-dimensional processes in a layer of conductivity P 
= 4 (in particular, when s = 1, spatial axisymmetric processes). This layer has a singular line y = 0 (the 
n axis), on which P = 0 and, consequently, Eq. (1.6) is degenerate. 

When s = 0, Eq. (1.6) takes the form of the Cauchy-Riemann equation aW/& = 0, which is satisfied 
by analytic functions describing plane-parallel processes in homogeneous layers (P = 1). Consequently, 
analytic functions are a special case (when s = 0) of the functions W(z), which satisfy Eq. (1.6). 

Equation (1.6) is a special case of the general form of an equation [l], the coefficients of which belong, 
in the region D in which they are defined, to the set L,(D) of functions summed with powerp > 2. The 
coefficients +s(z -2)-l’* of Eq. (1.6) may 
half-plane Im z 

belong to the set L,(D),p > 2 only in those regions D of the 
2 0 which do not contain points of the singular line y = 0. In these regions the earlier 

properties of the functions [l], which satisfy equations of general form, are extended to the solution W(z) of Eq. (1.6). However, the solutions of Eq. (1.6) p ossess a number of properties that are 
characteristic solely of them, due to the presence of the singular line y = 0. 

2. One such property is the transformation of the inversion of the function W(z) with respect to a 
semicircle (a sphere when s = 1) of radius a, carried out from the origin of coordinates. This 
transformation is as follows: if the function W,(z) satisfies Eq. (1.6) its solution will be the function 

(2.1) 

where the values ofp and o are defined by the form of W,,(z). That is, if the singular points of the function 
W,(z) lie in the region Di(l z 1 > a) and 1 W,(z) I = O(l z Iv’) as 1 z 1 + 0, thenp = 0, or = u - ul; if its 
singular points lie in the region &(I z 1 < a) and 1 W,(z) 1 = O(1 z lmpz) as 1 z 1 + 00, thenp = 00, ok = p2 
- u, u = const > 0. If the function W,(z) has singular points in the region Di (or D2), the singular points 
of the function W(z) will be in the region D2 (or Di). 

By finding the functions cp and w by means of (1.2) and (2.1) we can verify that they satisfy Eqs (1.1) 
when 5 = X, rl = y and P = f, s > 0. Consequently, (2.1) is the solution of Eq. (1.6). 

In particular, transformations of the inversion of the function W(z) with respect to a sphere (for s = 
1) [7] and a circle (for s = 0) follow from (2.1): W(z) = W&*/Y), characteristic for analytic functions. 

For the function W(z), unique and continuous together with the partial derivatives with respect tox 
and y in the region D of the half-plane Im z 3 0, we will introduce [3,4] operations of differentiation 
and integration. We define a X-derivative W, = d,W/dz such that it satisfies Eq. (1.6) everywhere in 
the region D, i.e. 

w, 

and introduce the C-integral of W(z) along the piecewise-smooth contour (C E D) as follows: 

(2.2) 
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where < = 4 + irl is the variable of integration and z, c E D. 
The Z-integral (2.3) that does not depend on the choice of the contour C and the position of its initial 

point z. and its final point z, defines the function W*(z) as follows: 

jW(Od,<= W’(z)-w;, w; =$(q))+i 
lo I 1 

5 ‘l/(2()) (2.4) 

(IV*, is a generalized complex constant), which is the analogue of the Newton-Leibnitz formula for 
analytic functions. Here W’(z) is the inverse image of the function W(z): W%(z) = W(z). 

If the contour C is closed (the points z. and z of this contour coincide) and it lies wholly in the simply 
connected region D, we have from (2.4) 

pw,c = 0 (2.5) 

which is an extension of Cauchy’s theorem for analytic functions to the case of the functions W(z). 
The Z-derivative (2.2) and the X-integral (2.3) can be given a certain physical meaning, for example, 

in the case of the two-dimensional flow of a fluid in a layer of permeability k = 1 and thickness h = f, 
s > 0. That is, the C-derivative of the complex potential IVof the flow is equal to its complex-conjugate 
velocity P = 3 - iv,, (vX and vr are the projections of the velocity onto the x and y axes): W, = r; the 
Z-integral of V 

defines the circulation I and the flux II of the fluid velocity vector, calculated for the contour C. Then, 
(2.4) for the flow velocity r*(z) enables its complex potential P(z) to be found, which is defined by 
the circulation I and the flux Il, calculated for the contour C, connecting the points z. and z. By 
formulating the generalized Cauchy theorem for the flow velocity V(z), we can assert, from (2.5) and 
(2.6), that this expresses the potentiality of the flow (I = 0) and the absence of a volume discharge of 
the liquid (II = 0) in the simply connected region, where there are no vortices and no sources (sinks). 

Note that the operations of Z-differentiation (2.2) and C-integration (2.3) of the function W(z) can 
be extended to regions including the singular line y = 0, on which differentiation and integration of 
the function <p = Re W(z) with respect to the variablex occurs. The velocity of the process on the singular 
line is directed along it (vY = 0), and is a streamline. 

3. To construct a theory of the functions W(z), the so-called [2] correct fundamental solutions of Eq. 
(1.6) 

. s 

F,(z, &))=@,(z* zo)+i 5 
( > 

Y,(z, ZrJ), k=l, 2 (3.1) 

are of fundamental importance. The functions ak(z, zo) and W,(z, zo) in the variable z satisfy Eqs (l.l), 
written in terms of x and y for P = f, s > 0. 

Using well-known results [8], we obtain 

& R2 R=,/ =-) 
4YYO 

(x--o)2 +(Y-Yo)2 

where Q,n-i is a Legendre function of the second kind. 
We will use the transition formula [6] relating the stream function to the velocity potential vs in a 

layer of conductivity P = f with exponents s and s + 2, which we write as follows: 

v, = -(YYo ).$+I %+2 (3.3) 

As (P~+~ we wilI take from (3.2) the function @i(z, zo), in which we replace s by s + 2. Then, by (3.3) 
and Eqs (1.1) in x, y coordinates we have 
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Note that an integral representation was obtained in [8] for Y2(z, to) in terms of Bessel functions, 
that is only suitable when x 2 0. 

We can give the solutions (3.1), (3.2) and (3.4) a certain meaning for flows in a layer of constant 
permeability k = 1 and thickness h = f, s > 0. That is, the following complex potentials correspond 
to these solutions 

S 

Edz. zo) 

where a,, p are real constants. Taking into account the fact that the Legendre function Q,(l + 2E) has 
an isolated logarithmic-type singularity at the point z. = x0 + iyo, according to expansion (3.9(7)) in 
[9], following the well-known approach [6] we calculate the flux and circulation of the vector fluid velocity. 
We obtain 01 = n/(2x) and j3 = I-‘/(2x). Consequently, the complex potentials (3.5) and (3.6) describe 
a point source (or sink) of total power II > 0 (or II < 0) and a vortex of overall intensity F’, directed in 
an anticlockwise direction (r > 0) or in a clockwise direction (I” < 0). 

Using the fundamental solutions Fk(z, zo) (k = 1,2), we obtain systems of solutions of Eq. (1.6). From 
(3.5) and (3.6) we obtain the solution 

which in the hydrodynamics of layers of thickness h = f, s > 0 can be treated as the complex potential 
of a vortex source. Carrying out n-fold C-differentiation of (3.7) we obtain solutions in the form of 
negative formal powers 

(-l)“-’ d” 
Z(-")(a, p, Z. Q)= (n-l)r $(a9 fi z. ~0) (3.8) 

which, at the point zo, have poles of order n (here and henceforth, unless otherwise stated, n = 1,2, 
3 
be’ 

. .). Then, the complex potentials W,,, describing multipoles of order 2n with moments M,, will 

W” =~(-l)“-‘(n-l~!z(-“)(a, 8. z, izo) 

In particular, from (3.7)-(3.9) for n = 1 and ct = cos 8i, j3 = sin t3i we have the complex potential 
of a dipole with moment Mi, directed at an angle 0i to the x axis 

w, = 
M,s(yyJs’2 

2& 
teie’ tQs,,-1 - Qs/2 

2yyO(X-XO-i(Y-YO)) +iyo + 
R2 1 

+<Qs,,-, case, - iQ,,2 sin 8, Xx - x0 - i(y + y. )I (3.10) 

R, =I/( x--xo)~ +(Y+Yo)~. Q, =Q,(*+~E) 

We will consider the special case when the multipoles are situated at the origin of coordinates (z. = 
0). Writing the asymptotic expansion of the Legendre function Q&l + 2c) as 1 zs I+ 0, in accordance 
with formula (3.9.1(21)) in [9], we have in the limit 



‘Iwo-dimensional processes in inhomogeneous layers 581 

Then, assuming a = k(s)/n, p = 0 in (3.7), we obtain from (3.8) 

z’-“‘(z) = a” rSS + iV an-’ (-1)” 

[ d ax* 
r-s-2 

axn-' 1 (3.11) 

After reduction and introducing the Gegenbauer polynomials C:(cos 0) (f3 is the angle of a polar 
system of coordinates) and using generating functions (10.10(29)) from [lo] for them, the powers (3.11) 
can be written in the form 

Z(-n)(Z)=r-n-s Cs’2(cose)-iSSine 

[ 
n - c;!j+l (c0se) 

n 1 (3.12) 

Following [3,7], we will call the positive formal power Z(“)(a, g, z, zc) the complex potential W,,, which 
is obtained by n-fold C-integration from z. to z of the generalized complex constant a + i&!i/(z - Z)]” 
and by multiplication by n!, i.e. 

2i ’ 
Z’“‘(a,P,z,zo)=a+i@ - , 

( 1 Z-Z 
Z’“‘(a,B,z,~)=n~Z(n-l)(a,p.~.zo)d,~ (3.13) 

zo 

The powers (3.13) forz = z. have zeros of order n, while at infinity they have poles of the same order. 
For s = 0 they take the form of analytic functions (a + ip)(z -zo)*. Hence, by analogy with the plane- 
parallel case (S =- 0), these powers can be regarded as complex potentials of multipoles of order 2n, 
situated at infinity. 

The form of the powers (3.13) is determined by the choice of a, l3 and zc. In particular, when a = 1, 
l3 = 0, z. = 0 they can be written most simply as 

Z(O)(~) = 1, z(-)(~) = ,n 
[ 

ssin8 c~‘2(c0se)++sc~!~+1(c0se) 1 
Note that the powers (3.12) and (3.14) are related to one another by a transformation of the inversion 

(2.1). 
The well-known solutions [5,11] of Eq. (1.6) follow from (3.8) and (3.13), in particular, when s = 1. 
The systems of functions obtained in the form of the powers Z(‘“)(a, l3, z, zo) enable a number 

of methods of solving boundary value problems of processes described by Eqs (1.1) to be developed. 

4. One of the methods rests on a generalization of the Cauchy integral, known for analytic functions. 
Using the second Green’s formula for Eqs (1.1) written in x, y coordinates with P = f, s > 0, on the 
basis of the solutions (3.2) and (3.4), by analogy with the approach used previously in [7], we obtain 
the generalized Cauchy formula 

which defines the function W(z) in terms of the value of the boundary C of region D. The integral in 
(4.1) is the generalized Cauchy integral. Its kernel Q,(z, 6) can be expressed in terms of the normalized 
(Mi = 2x) complex potentials w1 and wi’ of the dipoles (3.10) with moments along the x axis (0, = 0) 
and perpendicular to the x axis (e, = x/2) 

and have the form 
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%/Z-I f Q,/2 

4* 
. c+=c L=( 

- - 
Q, =Q,(l+z&), ,,-(z-c)(z-~) 

(z - Z)K - c> 

(4.2) 

From (4.2) with s = 1 we obtain expressions for the kernels, obtained previously in [7, 111. For s = 
0 we have a,(~, 1;) = +(z - &)-‘, and (4.1) re d uces to the Cauchy formula for an analytic function in 
the region D symmetrical about the x axis. 

Replacing W(c) in (4.1) by the functionf(<), continuous along the line C, we obtain a generalized 
Cauchy-type integral, which defines the function W(z) in the region D, which satisfies Eq. (1.6). 

5. Another method of solving boundary-value problems consists of expanding the function W(z) in 
series in formal powers, which turns out to be possible for solving equations of the form (1.6) [l, 31. 

We can represent the function W(z) in a circle of radius CI by a generalized ‘Ittylor series in powers 
of (3.13) i.e. 

W(z)= 5 Z(“)(a,,p,,z,~), Iz-zd<a 
n-0 

The real coefficients q, /3, are found from the equations 

which are obtained by n-fold C-differentiation of this series. 
At the end aI c ] z - z. ] c a2 the function W(z) can be represented in the form of a generalized 

Laurent series in powers of (3.8) and (3.13) 

W(Z)= 2 Z(n)(a,,&.z,~)+n$, Z(-“)(a-,.LzlzO) 
#I=0 

After introducing the residue of the function W(z) as the X-integral (2.3), divided by 2ti, the 
fundamental theorem of the residues of this function can be formulated and proved in the same way 
asinthecases = 1 [7]. 

Note that for the functions W(z) we have an analogue of Sokhotskii’s formulae, a theorem on analytic 
continuation, the mirror-image principle and other properties of the class of functions [l, 21, to which 
W(z) belongs. 

Hence, the fundamental theories of the functions W(z) described above are a complete analogue of 
the basic ideas of analytic functions, where the analytic functions are a special case of the functions 
W(z) when s = 0. This theory enables boundary-value problems to be solved in final form for two- 
dimensional processes. 

6. We will employ the expansion in a generalized series (5.1) to find systems of functions which are 
used to solve boundary-value problems. That is, by setting up in the semicircle z = egg, 8 E [0, x] a series 
of powers of (3.14) we obtain the function 

00 (ar)” 
E(a,z) = ,fb o 

n [ 

ssin8 
C~‘2(~~s8)+i+sC~!~-‘(~~~e) 1 

where (s)” is the Pochhammer symbol [9]. Using formula (10.9(30)) from [lo], we obtain after reduction 

( 1 

-v 

E(a, z) = T(v + l)em 7 [J,(w) + iJv+l (ay)l, v = ? (6-l) 
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Taking into account the property of Bessel functions [lo] .Zv(-ay) = (-l)“J,(ay), on the basis of (6.1) 
we introduce the functions 

Ch(a,z)= WA ;W-a. z) , Sh(a, z) = Ra,z)-EE(-a,z) 
2 (6.2) 

Bearing in mind the property of Bessel functions of imaginary argument [lo] .Z,(icf~~) = i”l,(oly), we 
have 

Ch(ia, z) = C(a, z), Sh(ia, z) = iS(a, z) 

where 

-V 
C(a, z) = T(v + 1) ( 1 y [cos ad, (ay) - i sin axl,,, (ay)] (6.3) 

-v 

S(a,z) = r(v + 1) 
( 1 

y [sinaxZv(ay)+icosourZv+,(ay)] 

Using the formulae for the differentiation of Bessel functions, it can be shown that Eqs (1.1) in x, y 
coordinates when P = f, s > 0 are satisfied by the functions 

which follow from (1.2) and (6.3). Then, the functions (6.3) are solution of Eq. (1.6). 
In particular, when s = 0 (v = -l/2), the functions (6.1)-(6.3) take the form of analytic functions: 

ew, ch oz, sh az, cos az, sin oz. Consequently, (6.1)-(6.3) can be considered as analogues of the corres- 
ponding analytic functions when s > 0. 

Using the differential properties of Bessel functions [lo], we can obtain solutions of Eq. (1.6) inde- 
pendently of (6.1)-(6.3). For example, if we replace the Bessel functions I,, and Z,,+i by MacDonald 
functions K,, and -K,+ 1 in the solutions (6.3) we obtain other solutions of Eq. (1.6). We will introduce 
the functions T(a, z) and T,(a, z) as linear superpositions of the functions (6.3) and these solutions 

T(ol,z)=y~V[(Acoscrr+Bsinauc)Zv(ay)-i(Asinax--‘~cosax)Zv+l(ay~J 

T,(a,z)=y-“[(Acosax+Bsina.x)K,(ay)+i(Asinax-Bcosour Z,+,(ay)l 
(6.4) 

where A and B are real constants. 
The general solution W(z) of Eq. (1.6) can be represented as the sum of T(a, z) and Ti(a, z). In 

particular (as follows from the asymptotic for of the functions Z,, K, [lo]), if the solution H’(z) is bounded 
when y = 0, it can be expressed in terms of the function T(a, z); if the solution W(z) is bounded at 
infinity, it can be represented in terms of Tl(a, z). 

7. We will use the apparatus of the functions W(z) to solve boundary-value conjugation problems for 
two-dimensional processes in an inhomogeneous layer. The variable conductivity of the layer is due to 
a change in its permeability k and thickness h. To fix our ideas we will assume that h varies continuously 
while k varies in jumps along a certain curve L’ of the 5 plane of the base of the layer. Suppose this 
curve is the boundary of regions 0; and 05, the permeabilities of the media of which kl and k2 and the 
processes in them are described by the following complex potentials 

Wj = kjqj + iv/h, j = 1,2 (7.1) 

We will assume that the conjugation conditions cpl = (p2, w1 = v2 are satisfied on L’. These conditions, 
for example, in the case of seepage 14, 121, express the continuity of the pressure and the flow rate of 
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the liquid. These conditions can be written as follows in terms of the complex potentials (6.1) 

(1-h)W, = w, +hWz 
L 
h=E, x E [-1.11 

1 2 1 
(7.2) 

Suppose the process in the layer with constant permeability ka, taken as the unit of measurement of 
the permeability of the media (kc = l), is described by the complex potential IV0 = cpo + i\ydh. We will 
represent it in the form IV0 = War + IV,,, where the functions IV,,, and IV& have singular points in the 
regions LSr and g2. 

In the C, plane it is required to solve the boundary-value conjugation problem (1.3), (7.2) for the 
function IV(<). A similar form of the conjugation problem has been investigated in a number of 
publications (see the review in [13]) by reducing it to the corresponding generalized problem in the 
class of analytic functions, which, in the final analysis, leads to the need to solve an integral equation 
with conditions which are more complex than (7.2) and which therefore gives rise to greater difficulties. 

Using the conformal covariance of problem (1.3) (7.2), we reduce it to the simpler (canonical) 
conjugation problem (1.6), (7.2) for the function W(z) with boundary L of the regions Dr and D2 in the 
half-plane Im z 3 0. We will consider the case when the boundaries L differ considerably and they can 
model a semicircle and straight lines, for which solutions of the canonical problem can be obtained in 
closed form. 

We will assume that a semicircle of radius a is drawn from the origin of coordinates: z = aeie, Cl E 
[0, x] is the boundary of regions Di(l z 1 > a) and D2() z 1 < a). Suppose 1 War (z) 1 = O(1 z lh) as 1 z I+ 0 
and 1 IV&) 1 = O(l z 1-b) as 1 z I+ = (pi = p - ~(1 + X)/2, p2 = p + ~(1 - h)/2, p > 0). Then, we have 
the complex potentials of the process in regions Dr and D2 

G~(z)=x~ i ~r’2-‘-xiWOj(~)~, xj =(-l)‘--, j=I,2, A ~0, ~2 =m 
.k 

PI 2 

In fact, formulae (7.3) are the solution of the problem. The integrals, that define the functions Gj(Z), by virtue 
of the above-mentioned limitations on IV&) converge, and these functions satisfy Eq. (1.6). The expressions in 
square brackets, multiplied by (a/] t I)“, according to Eq. 
solution of Eq. (1.6). Since on the boundary L: z = ue”, 

(2.1), also satisfy this equation. Consequently, (7.3) is a 
8 E [0, it] we have the equation ZZ = a’, it is easy to show 

that solution (7.3) satisfies condition (7.2) on it. 

Suppose the half-line L: x = 0, y 3 0 is the boundary of the regions Dr(x > 0) and D2(x < 0). Then, 
the process in these regions is described by the complex potentials 

w, = W~(z)+h[W,,(-Z)+W,,(z)l, w, = Wo(z)-h[W,,(z)+W,<-r>l (7.4) 

which are a solution of the problem. 

In fact, H&(-Z) = psi(-x, y) and W,(-2) = v&-x, y) have singular points in the regions Dz and D1 and satisfy 
Eq. (1.6). Then, (7.4) are solutions of Eq. (1.6). It can be shown that condition (7.2) is satisfied for this boundary 
L. 

Suppose now that the straight line L: y = b = const is a boundary of the region DrO, > b) and 
D2fy c b). We will seek a solution of the problem in the form [14] 

w = w, +TAda)l;(a~z)da, w, = w, + jh,(ii)T(a.z)da 
0 0 

(7.5) 

where T(a, z) and Ti(o, z) are defined by (6.4). We will assume that the function cpo(x, y) = Re IV0 on 
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the boundary l: y = b is continuous and absolutely integrable with respect to x E I-, -[. Consequently, 
it can be expanded in a Fourier integral [15] 

‘~o(~,b)=%[A(a)cosar+B(a)sinnrldcr 
(7.6) 

A(a) = 1 n~~cP,(r,b)cosardr, B(a)=~jpo(t,b)sincudt 
00 m 

Then, satisfying conditions (7.2) on L: y = b and taking the equation Iv(z)&+i(z) + I,+i(z)K,(z) = 
z-l into account [lo], as well as Eqs (6.4), (7.5) and (7.6), we have 

W, = W, + y-” I MaV,+, W)[K,(ayMa,x) + iK,+, (ay)w, (a,x>lda 
0 

K = W, -ye” j~~a~~,+~~~~II,~ay~~~a,~~-il,+,(ay)w,~a,x)1du 
0 

(7.7) 

A(a) = 2hb”[(l- X)(&J)-’ + 2hZv(c&)Kv+, (&)]-I 

w(a,x) = A(a)cosax + B(a)sinar = .!. cosa(r - x)dt 

1 &o(a,r) 1 W 
q(w)=; ax =,_I ~o(r,b)sina(t-x)df 

The integrals in (7.7) converge. 

In fact, the moduli Mr and M2 of the integrands in the complex potentials Wi and W, are functions of a E 
[0, -[with a limited change in each finite interval. Since, as a + -, 
I,, K, [lo], we have M1 = O(~@/y)e”~)) and M2 = O($bly)e 

by virtue of the asymptotic form of the functions 
*cbT)) then in the limit Mi and M2 take finite values. 

Consequently, the integrals in (7.7) converge, and these formulae give the solution of the problem. 

Note that solution (7.7) also occurs when in, the regions Di(y > b) and D2(y < b) the laws of variation 
of the layer thickness are different: hi = @lb)” 
(Sj - 1)/2,j = 1, 2. 

, Sj > 0, if in the complex potentials Wj we take v to mean 

Solutions (7.3) (7.4) and (7.7) define, in particular, the complex potentials of seepage processes when 
one of the regions Di or D2 is impenetrable (ki = 0, h = -1 or k2 = 0, h = l), or is a cavern (k, = 00, 
h=10rk2=m, h = -1). These solutions take a well-known form for plane-parallel processes (s = 0) 
[6] and axisymmetric processes (s = 1) [7, 141. 

Note that solutions (7.3), (7.4) and (7.7) describe arbitrary two-dimensional processes modelled by 
singular points of the function W,(z). In particular, these solutions define the process caused by a source 
(sink), if we take W,(z) in them to mean the complex potential (3.5). 

Applying conformal transformations to (7.3), ( .4) and (7.7) we obtain, in a closed form, a wide class 
of boundary-value conjugation problems (1.3) and (7.2) for two-dimensional processes in inhomogeneous 
layers, the conductivity of which is modelled by relation (1.5). 

The boundary-value problems investigated above using the developed apparatus of functions W(z) 
does not exhaust its possibilities. It can be used for a wide range of two-dimensional processes of different 
physical kinds, described by Eqs (1:l). In particular, for seepage in layers of conductivity (1.5) with 
s = 1 a solution of a number of conjugation problems is obtained [5, 141. This apparatus may also be 
of interest when investigating plane-parallel flows of an ideal compressible fluid, defined by Chaplygin’s 
equations. 

I wish to thank 0. V Golubeva for her interest. 
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